Qwen2.5-VL:图片处理成token


  • Qwen2.5-VL
def _preprocess(
        self,
        images: Union[ImageInput, VideoInput],
        do_resize: Optional[bool] = None,
        size: Optional[dict[str, int]] = None,
        resample: Optional[PILImageResampling] = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, list[float]]] = None,
        image_std: Optional[Union[float, list[float]]] = None,
        patch_size: Optional[int] = None,
        temporal_patch_size: Optional[int] = None,
        merge_size: Optional[int] = None,
        do_convert_rgb: Optional[bool] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
            vision_info (`list[Dict]`, *optional*):
                Optional list of dictionaries containing additional information about vision inputs.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Scale factor to use if rescaling the image.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            patch_size (`int`, *optional*, defaults to `self.patch_size`):
                The spatial patch size of the vision encoder.
            temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
                The temporal patch size of the vision encoder.
            merge_size (`int`, *optional*, defaults to `self.merge_size`):
                The merge size of the vision encoder to llm encoder.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        images = make_flat_list_of_images(images)

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if do_rescale and is_scaled_image(images[0]):
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )
        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        height, width = get_image_size(images[0], channel_dim=input_data_format)
        resized_height, resized_width = height, width
        processed_images = []
        for image in images:
            if do_resize:
                resized_height, resized_width = smart_resize(
                    height,
                    width,
                    factor=patch_size * merge_size,
                    min_pixels=size["shortest_edge"],
                    max_pixels=size["longest_edge"],
                )
                image = resize(
                    image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
                )

            if do_rescale:
                image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)

            if do_normalize:
                image = self.normalize(
                    image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
                )

            image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
            processed_images.append(image)

        patches = np.array(processed_images)
        if data_format == ChannelDimension.LAST:
            patches = patches.transpose(0, 3, 1, 2)
        if patches.shape[0] % temporal_patch_size != 0:
            repeats = np.repeat(
                patches[-1][np.newaxis], temporal_patch_size - (patches.shape[0] % temporal_patch_size), axis=0
            )
            patches = np.concatenate([patches, repeats], axis=0)
        channel = patches.shape[1]
        grid_t = patches.shape[0] // temporal_patch_size
        grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
        patches = patches.reshape(
            grid_t,
            temporal_patch_size,
            channel,
            grid_h // merge_size,
            merge_size,
            patch_size,
            grid_w // merge_size,
            merge_size,
            patch_size,
        )
        patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
        flatten_patches = patches.reshape(
            grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
        )

        return flatten_patches, (grid_t, grid_h, grid_w)
  • 最后的维度是 patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)

分别对应grid_t, grid_h//merge_size, grid_w // merge_size,merge_size , merge_size, channel , temporal_patch_size, patch_size,patch_size

(1) 为了和video统一输入,所有图片都重复了1次,有了temporal_patch_size

画一个详细的图...